[an error occurred while processing this directive]

El cometa C/2010 X1 (Elenin). 0.3-m f/6.5 Schmidt-Cassegrain + CCD + Red filter. Créditos C. Bell H47 Vicksburg.


Como usar el cometa 2010X1/Elenin con el programa Stellarium

El programa Stellarium puedes descargarlo de aquí.

El cometa 2010X1/Elenin fue descubierto en Diciembre de 2010. Ver detalles aquí.

El programa Stellarium no incluye los cuerpos de reciente descubrimiento, pero se pueden incluir, simplemente escribiendo sus elementos orbitales en el fichero de inicio del programa (.INI).

En primer lugar, localiza el archivo Stellarium/Data/ssystem.ini en Archivos de Programa.  En este archivo se almacenan los elementos orbitales del Sol, La Luna, Mercurio, Venus, etc... en general de todos los cuerpos que vemos seguir una órbita desde la Tierra (satélites de otros planetas y asteroides, cometas...incluidos). 

Edita el fichero con un editor de texto (Wordpad, p.ej) y vete al final del mismo. Incluye las siguientes líneas:


[Elenin]
name = 2010X1/Elenin
parent = Sun
coord_func = comet_orbit
radius = 10
oblateness = 0.0
albedo = 1
lighting = true
halo = true
color = 1.0,1.0,1.0
tex_map = nomap.png
tex_halo = star16x16.png
orbit_Epoch = 2455635.5
orbit_SemiMajorAxis = -8379.16344923547
orbit_Eccentricity = 1.000057574878451     
orbit_Inclination =  1.839430469894279            
orbit_AscendingNode = 323.2333639750312     
orbit_ArgOfPericenter =  343.7998575586238     
orbit_MeanAnomaly = 359.9997690603867     
absolute_magnitude = 10.0
slope_parameter = 4
orbit_TimeAtPericenter = 2455815.219562854138
orbit_visualization_period = 365.25

Graba el archivo de nuevo en el directorio. Inicia Stellarium y ya funcionará. Busca el cometa 2010X1/Elenin y localiza su trayectoria a lo largo de los días. El único problema es que no se conocen algunos elementos orbitales y la magnitud absoluta del cometa aparece como de 40 (en el programa Stellarium), cuando en realidad es de 10.

¿QUÉ SON LOS ELEMENTOS ORBITALES?

Las órbitas se definen según las leyes de Kepler. En base a estas leyes, los cuerpos en órbita recorren una trayectoria en forma de elipse, con el Sol en uno de los focos (1ª ley de Kepler), la linea que une el planeta o cuerpo con el Sol, en tiempos iguales, recorre areas iguales (2ª ley de Kepler) y el cuadrado del periodo de un planeta es proporcional al cubo de su distancia media al Sol (3ª ley de Kepler).  

Kepler definió el "como", pero Newton definió el "cuanto".  

A Newton se debe el descubrimiento de las leyes del movimiento y de las fuerzas que actuan sobre los cuerpos, y enunció la Ley de la Gravitación Universal definiendo que la Fuerza entre estos es "directamente proporcional a las masas e inversamente proporcional al cuadrado de las distancias". Es decir:

Ley de Gravitación Universal. Newton.

en la que Fg es la Fuerza de atracción entre dos cuerpos, M y m son las masas de esos dos cuerpos, r es la distancia entre ellos y G es la Constante de Gravitación Universal, cuyo valor es 

Constante G

LOS ELEMENTOS ORBITALES

Son cinco cantidades. Con ellas se define totalmente la forma, el tamaño y la orientación de la órbita de cualquier cuerpo. Además hay un sexto elemento para situar la posición del satélite en su órbita en un momento determinado. Los llamados "clásicos elementos orbitales" son:

  • El semi-eje mayor: es una constante que define el tamaño de la órbita (de la elipse). Se conoce como a.
  • La excentricidad: es la constante que define la forma de la elipse. Se conoce como e.
  • La inclinación: es el ángulo entre el vector unitario K y el vector momento angular, h. Se conoce como i.
  • La longitud del Nodo Ascendente, es el ángulo, en el plano fundamental, entre el vector unitario I y el punto donde el satélite cruza el plano fundamental hacia el Norte (nodo ascendente) medido en sentido antihorario cuando se ve desde la cara Norte del plano fundamental. Se conoce como Ω.
  • Argumento del periapside. Es el ángulo, en el plano de la órbita del satélite,  entre el Ω (nodo ascendente) y el punto del periápside, medido en el sentido de movimiento del satélite. Se conoce como ω.
  • Tiempo de paso por el periápside: el momento en que el satélite pasó por el periápside. Se conoce como T

Estas definiciones valen para referirse a satélites orbitando la Tierra (con el sistema de coordenadas ecuatorial geocéntrico) o para definir órbitas de planetas orbitando el Sol, con sistema de coordenadas heliocéntricas. Tan solo se diferenciarán ambos tipos de satélites en la definición de de los vectores unitarios y en la definición del plano fundamental.

Cuando nos referimos a satélites terrestres, usamos la expresión perigeo en lugar de periápside. Ver aquí.

De la misma forma, cuando nos referimos a planetas orbitando alrededor del Sol, hablamos de perihelio en lugar de periápside. 

Los elementos listados arriba no son los únicos, ya que se pueden usar otros, como la longitud del periápside, que es el ángulo desde I hasta el periápside medido al Este del Nodo ascendente (si existe), siendo conocido como Π y su valor es Ω + ω. 

Si no hay periápside (como en el caso de las órbitas circulares) , no se definen ni ω ni Π .

Elementos orbitales. Créditos NASA.

Madrid, 20 de Mayo de 2011 

Blender

Tutoriales Blender

Blender es un programa gratuito de diseño 3D con una increible cantidad de recursos en la red. Puedes usarlo para recrear la astronomía entre otras cosas...

ETACI Escuela de Terapias alternativas

Escuela de Terapias alternativas

En Madrid, centro de estudio de terapias alternativas:

  • Reiki
  • Geometría sagrada y cristales
  • Astrología arquetípica
  • Anatomía del cuerpo energético...
Contuct Us

Contacta con nosotros

Contacta con nosotros a través del correo electrónico.